
Lab1 - Ladder Diagram Page 1
Home_Sta1:MainTask:MainProgram 2/15/2020 11:37:40 PM
Total number of rungs in routine: 21 C:\Users\WASCHAEFER\Documents\Studio 5000\Projects\Assembler_Lab1.ACD

Logix Designer

Lab 1 - Quick solution:

The intent of this program is to demonstate a simple Automatic event driven PLC program based on the Assembler Video provided for FactoryIO.
.

0

Cycle_Start_PB
<BOOL_IN_10>

Auto_PB
<BOOL_IN_14>

Cycle_Running_Lt
<BOOL_OUT_9>

Cycle_Stop_PB
<BOOL_IN_12>

Factory_Running
<BOOL_IN_15>

E_Stop
<BOOL_IN_13>

Cycle_Running_Lt
<BOOL_OUT_9>

Lab 1 - Quick solution:

The intent of this program is to demonstate a simple Automatic event driven PLC program based on the Assembler Video provided for FactoryIO.
.

Run the Lid Feed Conveyor until the Lid is in place to be Clamped.
Run the Base Feed Conveyor until the Base is in place to be Clampled.

Restart both conveyors once the Lid in Place Timer has completed (Assembly Complete).
.

1

Cycle_Running_Lt
<BOOL_OUT_9>

/
Lid_At_Place_Dwell.DN

Lids_Conveyor
<BOOL_OUT_3>

Run the Lid Feed Conveyor until the Lid is in place to be Clamped.
Run the Base Feed Conveyor until the Base is in place to be Clampled.

Restart both conveyors once the Lid in Place Timer has completed (Assembly Complete).
.

2

Cycle_Running_Lt
<BOOL_OUT_9>

/
Base_At_Place_Dwell.DN

Base_Conveyor
<BOOL_OUT_6>

3

Cycle_Running_Lt
<BOOL_OUT_9>

Lid_At_Place
<BOOL_IN_3>

Lid_At_Place_Dwell.DN

/
Lid_Placed

EN
DN

Timer Lid_At_Place_Dwell
Preset 600
Accum 0

TON

4

Cycle_Running_Lt
<BOOL_OUT_9>

Bases_at_Place
<BOOL_IN_6>

Base_At_Place_Dwell.DN

/
Lid_Placed

EN
DN

Timer Base_At_Place_Dwell
Preset 600
Accum 0

TON

Turn on the Suction to Grab the Lid once the input "Item Detected" turns ON.
.

5

Item_Detected
<BOOL_IN_2>

/
Lid_Placed

Grab
<BOOL_OUT_2>

Turn on the Suction to Grab the Lid once the input "Item Detected" turns ON.
.

Both Lid and Base Clamps have the condition to close once thier Lid or Base is in place and them to Unclamp once an Assembly has been built.
The Lid Clamp has an added condition to Unclamp once a Lid has been Grabbed.

.

6
Lid_At_Place_Dwell.DN

/

Grab
<BOOL_OUT_2>

Clamp_Lids
<BOOL_OUT_4>

Both Lid and Base Clamps have the condition to close once thier Lid or Base is in place and them to Unclamp once an Assembly has been built.
The Lid Clamp has an added condition to Unclamp once a Lid has been Grabbed.

.

7
Base_At_Place_Dwell.DN

Clamp_Bases
<BOOL_OUT_7>

Lab1 - Ladder Diagram Page 2
Home_Sta1:MainTask:MainProgram 2/15/2020 11:37:40 PM
Total number of rungs in routine: 21 C:\Users\WASCHAEFER\Documents\Studio 5000\Projects\Assembler_Lab1.ACD

Logix Designer

Advance_X_Dwell is needed to account for the delay between issuing a command and getting feedback. Since there is no
Advanced Sensor and Move_X must stay on to keep the X-Axis in the Advanced Position, the Dwell and NOT Moving_X can be

used in place of Advanced instead of creating a specific Bit.
.

8

Move_X
<BOOL_OUT_0>

EN
DN

Timer Advance_X_Dwell
Preset 200
Accum 0

TON

Advance_X_Dwell is needed to account for the delay between issuing a command and getting feedback. Since there is no
Advanced Sensor and Move_X must stay on to keep the X-Axis in the Advanced Position, the Dwell and NOT Moving_X can be

used in place of Advanced instead of creating a specific Bit.
.

9

Cycle_Running_Lt
<BOOL_OUT_9>

Lid_Clamped
<BOOL_IN_4>

Base_Clamped
<BOOL_IN_7>

/

Grab
<BOOL_OUT_2>

Advance_X_Dwell.DN
/

Moving_X
<BOOL_IN_0>

/
Lid_Placed

Move_Z
<BOOL_OUT_1>

There is no limit switch for the Z-Axis and we need to ensure the Z-Axis is fully raised before Advancing X.
Using the Move Command and Moving Feedback, Z_Raising_Memory is Sealed in. When the Axis stopped moving, Raised is turned ON and Sealed in at
the same time, releasing the seal on the Raising Memory Bit. Note that the technique used for the Axis Motion above could have worked as well. This just
demonstrate an alternate method (there is no "correct" method, however, unique bits would be more structured - See LAB 2) The Axis responds same as

controls using a Single-Ended-Spring-Return Solenoid. Turning OFF Move_Z Raises the Cylinder.
.

10

Cycle_Running_Lt
<BOOL_OUT_9>

Moving_Z
<BOOL_IN_1>

/

Move_Z
<BOOL_OUT_1>

Z_Raising_Memory

/
Z_Raised Z_Raising_Memory

There is no limit switch for the Z-Axis and we need to ensure the Z-Axis is fully raised before Advancing X.
Using the Move Command and Moving Feedback, Z_Raising_Memory is Sealed in. When the Axis stopped moving, Raised is turned ON and Sealed in at
the same time, releasing the seal on the Raising Memory Bit. Note that the technique used for the Axis Motion above could have worked as well. This just
demonstrate an alternate method (there is no "correct" method, however, unique bits would be more structured - See LAB 2) The Axis responds same as

controls using a Single-Ended-Spring-Return Solenoid. Turning OFF Move_Z Raises the Cylinder.
.

11

Cycle_Running_Lt
<BOOL_OUT_9> Z_Raising_Memory

/

Moving_Z
<BOOL_IN_1>

Z_Raised

/

Move_Z
<BOOL_OUT_1> Z_Raised

12

Cycle_Running_Lt
<BOOL_OUT_9> Z_Raised

Grab
<BOOL_OUT_2>

Move_X
<BOOL_OUT_0>

/
Lid_Placed

/
Z_Raised

/
Part_Clear

Move_X
<BOOL_OUT_0>

Lab1 - Ladder Diagram Page 3
Home_Sta1:MainTask:MainProgram 2/15/2020 11:37:40 PM
Total number of rungs in routine: 21 C:\Users\WASCHAEFER\Documents\Studio 5000\Projects\Assembler_Lab1.ACD

Logix Designer

This is a variation of how to detect the end of a motion using the Move Command the Moving Feedback.
Instead of creating a memory that Z is Advancing, Move_Z ON and Moving_Z OFF are conditions to detect end of stroke. However, since

the Moving Status of the Axis does not respond immeidately to the Move Command, there is a short period of time a the begining the stroke where the Move
 Command is ON and the Axis Moving Input has not turned on.

Although not technically a RACE condition, a timer can be utilized to ignor the overlap. On a real machine, the Returned Limit Switch woudl still be ON, for
example, during a short peroid of time after Solenoid Turns on and the cylinder

actually starts to move. Good "Real World" discussion.
.

13

Cycle_Running_Lt
<BOOL_OUT_9>

Move_X
<BOOL_OUT_0>

Move_Z
<BOOL_OUT_1>

/

Moving_Z
<BOOL_IN_1>

Lid_Placed

/
Part_Clear

EN
DN

Timer Lid_In_Place_Tmr
Preset 1000
Accum 0

TON

This is a variation of how to detect the end of a motion using the Move Command the Moving Feedback.
Instead of creating a memory that Z is Advancing, Move_Z ON and Moving_Z OFF are conditions to detect end of stroke. However, since

the Moving Status of the Axis does not respond immeidately to the Move Command, there is a short period of time a the begining the stroke where the Move
 Command is ON and the Axis Moving Input has not turned on.

Although not technically a RACE condition, a timer can be utilized to ignor the overlap. On a real machine, the Returned Limit Switch woudl still be ON, for
example, during a short peroid of time after Solenoid Turns on and the cylinder

actually starts to move. Good "Real World" discussion.
.

14
Lid_In_Place_Tmr.DN Lid_Placed

15

Cycle_Running_Lt
<BOOL_OUT_9> Lid_Placed

Moving_Z
<BOOL_IN_1>

Pos_Raise_Bases
<BOOL_OUT_8>

/
Part_Clear

Pos_Raise_Bases
<BOOL_OUT_8>

Part is clear once passed the Part Leaving sensor. This bit is used to reset the memory of having built a part.
A Falling Edge One-Shot could also have been used here; however, creating a "Part Leaving Memory" provide a good

visual indicator of what is happening in the code.
.

16

Cycle_Running_Lt
<BOOL_OUT_9>

Part_Leaving
<BOOL_IN_9>

Part_Leaving_Memory

/
Part_Clear Part_Leaving_Memory

Part is clear once passed the Part Leaving sensor. This bit is used to reset the memory of having built a part.
A Falling Edge One-Shot could also have been used here; however, creating a "Part Leaving Memory" provide a good

visual indicator of what is happening in the code.
.

17
Part_Leaving_Memory

/

Part_Leaving
<BOOL_IN_9> Part_Clear

Assemblies are counted as they finish passing the Part Leaving Detector.
Count using a one-shot and transfer from DINT to INT using Bit Distribute Instruction.

.

18
Part_Clear

ONS
Part_Clear_ONS

CU
DN

Counter Assembly_Count
Preset 0
Accum 0

CTU

Assemblies are counted as they finish passing the Part Leaving Detector.
Count using a one-shot and transfer from DINT to INT using Bit Distribute Instruction.

.

Lab1 - Ladder Diagram Page 4
Home_Sta1:MainTask:MainProgram 2/15/2020 11:37:40 PM
Total number of rungs in routine: 21 C:\Users\WASCHAEFER\Documents\Studio 5000\Projects\Assembler_Lab1.ACD

Logix Designer

19 Source Assembly_Count.ACC
 0
Source Bit 0
Dest Part_Count

<INT_OUT_0>
 0
Dest Bit 0
Length 16

BTD

20 /

Factory_Running
<BOOL_IN_15>

RES
Assembly_Count

(End)

